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Abstract
We have studied the stability of two entangled spins dressed by electrons
by calculating the scattering phase shifts. The interaction between electrons
is interpreted by fully relativistic QED and the screening effect is described
phenomenologically in the Debye exponential form e−αr . Our results show that
if the (Einstein–Podolsky–Rosen-) EPR-type states are kept stable under the
interaction of QED, the spatial wavefunction will be constrained to be parity
dependent. The spin-singlet state s = 0 and the polarized state 1√

2
(|+−〉−|−+〉)

along the z-axis give rise to two different kinds of phase shifts. Interestingly, the
interaction between electrons in the spin-singlet pair is found to be attractive.
Using this attraction we propose a mechanism to produce entangled pairs of
massive spin-1/2 particles.

PACS numbers: 03.65.Nk, 03.65.Ud, 03.67.−a

1. Introduction

Recently, the entangled pairs dressed by massive spin-1/2 electrons in solid-state materials,
which are a promising candidate for the carrier of the EPR states and hence required by
quantum information processing, have been widely investigated by different groups [1–4].
Meanwhile, the quantum information theory of particle scattering becomes a newly rising
topic [5]. It helps to generate the entangled pairs of electron spins. To understand the
generation and evolution of the degree of entangled spins, Liu and Chen have studied the
interaction between the entangled electrons [6]. By analyzing the entanglement of two identical
electrons with an interaction (neither covariant nor screened) interpreted by the nonrelativistic
QED, it is shown that the entangled spin-triplet states can evolve into states bearing no spin-
entanglement, whereas the spin-singlet state remains stable in the scattering process. In a
relativistic formulation, the authors in [7] have shown that the degree of entanglement is an
invariant quantity. And following this approach, the authors in [8] have addressed how the

1751-8113/07/3811617+09$30.00 © 2007 IOP Publishing Ltd Printed in the UK 11617

http://dx.doi.org/10.1088/1751-8113/40/38/012
mailto:whj@jlu.edu.cn
http://stacks.iop.org/JPhysA/40/11617


11618 H-J Wang and W T Geng

degree of entanglement transfers between spins and momenta of two particles via respectively
spin-independent scattering, interaction of lowest order QED and passing through an exterior
magnetic field. In [9], the dynamical generation of entangled spins via nonrelativistic and
rotationally invariant interaction has been investigated in detail by analyzing the symmetric
properties of scattering phase shifts.

In this paper we dedicate to the study of the stability of entangled spins of electrons by
calculating scattering phase shifts. We will describe the intra-pair spin interaction—which
is interpreted by fully relativistic QED—in a complete form covering all terms related to the
spin operators, and calculate the amplitude of the scattering of two fermions belonging to
an EPR pair. It is found that to make the spin-singlet state stable under the electromagnetic
interaction, some limitations on the angular momentum must be added. Furthermore, the
interaction between electrons in the spin-singlet pair is proved to be attractive. Such an
attraction is used in a mechanism to produce entangled pairs of massive spin-1/2 particles.
Results gained in this work is fundamental and will be instructive in constructing any realistic
models of generating entanglement of fermions.

The remainder of the paper is arranged as follows: in the next section, we present the
formulae used to calculate the phase shifts. In the third section the numerical results are
presented and used to propose a mechanism to produce entangled electrons. Some concluding
remarks are presented in the last section.

2. Formulism of calculating scattering phase shifts using two methods

In what follows we focus our investigation on the stability of the EPR state 1√
2
(|↑↓〉 − |↓↑〉)

by calculating the scattering phase shifts. The method of phase shift has been widely used
in many areas such as particle physics and nuclear physics, but it can only be applied to
specific systems when interactions fall off more rapidly than the Coulomb potential 1/r [10].
In nature, as we know, it is hard to find a pure Coulomb potential. Therefore, if we are
to examine the interaction between electrons that are entangled together, it is advisable to
include the screening effect. Here, motivated by the idea applying Debye theory [11] to the
electrolyte, fluid and dilute ions [12], we introduce a simple factor e−αr (r is the distance
between the two electrons) to phenomenologically illustrate this effect. In this picture,
the total potential actually falls off more rapidly than the Coulomb potential. In solid, while
the electrons are moving, the crystal lattice made up of ions with positive charges and spins
around the electrons will be distorted, yielding a screening effect.

To make a comparative study, two methods of directly making total spin s = 0 (method
A) (the spin-singlet state) and polarizing the orientations of the constituent spins (method B)
are employed. To avoid confusion, we use 1√

2
(|↑↓〉 − |↓↑〉) to denote general s = 0 eigen

state appeared in method A and 1√
2
(|+−〉− |−+〉) (in fact is the combination of right-hand

and left-hand helicity states) the polarized state along the z-axis appeared in method B. In
quantum mechanics, the above two expressions usually both denote a spin-singlet state. In
QED, however, since we calculate the unpolarized scattering process by averaging initial spins
and summing over final spins, the results will be independent on the polarization. So, we
use these two notations to compare two sorts of calculating results (due to methods A and
B). Regarding entanglement, the states in methods A and B are different: the former is an
entangled one but the latter is not. Because once performing a measurement (polarization)
on parts (in method B), there is no possibility of making them entangled together any more.
Regarding the derivation of scattering amplitude, they differ too. And these differences will
make the resultant phase shifts from the two methods drastically different.
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2.1. Calculation using method A

In method A, we take the spin-singlet state (s = 0) of two electrons as initial and final
scattering states to calculate the phase shifts. To do so, we need the amplitude of the scattering
process Mf i , which has the following form [13]

Mf i = (−ie)2

[
u(p3)γµu(p1)u(p4)γ

µu(p2)
1

(p1 − p3)2

−u(p3)γµu(p2)u(p4)γ
µu(p1)

1

(p2 − p3)2

]

= (−ie)2

[
M1

1

(p1 − p3)2
− M2

1

(p2 − p3)2

]
, (1)

u(p) is the Dirac spinor defined as
√

E+m
2E

( 1
σ ·p
E+m

)
, E =

√
p2 + m2. Here the amplitude form is in

fact an operator form, with the wavefunctions for spins determined by scattering characteristics.
In this case the injected states and scattered states are not polarized, so it is necessary for the
numerical evaluation to sum over the spin magnetic components ms .

Since this amplitude is covariant, it is allowable to choose a special reference to
simplify the formalism but at the same time leave the final amplitude unaltered. Here the
center-of-mass(CoM) reference system is used. Then the electrons’ initial momenta satisfy
p1 = −p2 = p, and the final one has p3 = −p4 = q. For the elastic scattering process, the
relation |p| = |q| is held for the momenta. Substituting the Dirac spinors of the CoM into
equation (1) and ignoring the constant (−ie)2 leads to the explicit forms of M1 and M2 [14]:

M1 =
{

1 +
1

(E + m)2
[2q · p + 3i(q × p) · (σ 1 + σ2) + q2(1 − σ1 · σ2) + q · σ 1q · σ 2

+ 2q · p(1 + σ1 · σ2) − p · σ 1q · σ 2 − q · σ 1p · σ 2 + p2(1 − σ1 · σ2)

+ p · σ 1p · σ 2] +
1

(E + m)4
[q · p + i(q × p) · σ 1][q · p + i(q × p) · σ 2]

}
, (2)

M2 =
{

1 +
1

(E + m)2
[−2q · p−3i(q × p) · (σ1 + σ2) + q2(1 − σ1 · σ2) + q · σ 1q · σ 2

− 2q · p(1 + σ1 · σ2) + p · σ 1q · σ 2 + q · σ 1p · σ 2 + p2(1 − σ1 · σ2)

+ p · σ 1p · σ 2] +
1

(E + m)4
[q · p + i(q × p) · σ 1][q · p + i(q × p) · σ 2]

}
. (3)

Because the sign of phase shift can be determined only relatively, we determine the signs
by comparing the phase shifts from the complete amplitude equation (1) and that from
Coulomb interaction—for classical electrons, the S-wave Coulomb force is repulsive, and
thus the corresponding phase shifts are negative. To elucidate the relationship of this complete
amplitude and that due to the Coulomb interaction, we first let γµ in equation (1) change to γ0,
then the first part of the amplitude reduces to that of interaction for point charges (producing
Mott scattering) [15]; and furthermore take the non-relativistic limit, the amplitude then can
be finally described by the classical Coulomb form 1

r
(producing Rutherford scattering) [15].

In the case γµ → γ0 equations (2) and (3) reduce respectively to

M1 =
{

1 +
1

(E + m)2
[2q · p + i(q × p) · (σ 1 + σ2)]

+
1

(E + m)4
[q · p + i(q × p) · σ 1][q · p + i(q × p) · σ 2]

}
, (4)
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and

M2 =
{

1 +
1

(E + m)2
[−2q · p−i(q × p) · (σ 1 + σ2)]

+
1

(E + m)4
[q · p + i(q × p) · σ 1][q · p + i(q × p) · σ 2]

}
. (5)

The screening effect mentioned in the introduction can be phenomenologically
incorporated into the propagators in equation (1) by introducing a factor e−αr , where α is
the inverse of the Debye screening length [11] and r the distance between the two electrons.
The factor can be related to the momentum propagator by applying the Fourier transform

1

(2π)3

∫
e−αr

r
ei

⇀
r ·⇀k d3k = 1

k2 − α2
. (6)

Obviously, if α → 0 the propagator will reduce to the original form. Now we can include
the screening effect by using the propagator 1/(k2 − α2) instead of 1/k2 in equation (1). The
phenomenal factor e−αr in the propagator is effective for both scalar and vector potentials,
suggesting that the magnetic moments are screened in a similar way as charges. The screening
effect of magnetic moments has been confirmed by Wilson et al in studying the Kondo effect
[16]. Although the Kondo model has been studied intensively, its entanglement structure is
still unclear [17]. Up to date no studies of scattering for entangled screening electrons have
been reported.

As argued in the previous study [18], the Born approximation can be reasonable provided
the scattering processes are of low energy and elastic ones. The scattering of electrons in solid
should meet these requirements. In this approximation and in the CoM frame, the lth partial
wave phase shift is expressed by the following formula [18],

δJ
l = − 1

2EkMJ l
f i(k). (7)

Here E is the total energy of the two-electron system, k = |p| = |q| is the magnitude of the
relative momenta p and q, and MJ l

f i(k), with total angular momentum J and orbital angular
momentum l, is the transition amplitude given by

MJ l
f i(k) = 1

(4π)2

∑
m,m′,ms ,m′

s

CJM

lm 1
2 ms

CJM

lm
′ 1

2 m′
s

∫
d�(

∧
p)d�(

∧
q)Y ∗

lm′(
∧
q)Ylm(

∧
p)Mf i(p, q;ms,m

′
s),

(8)

where CJM

lm 1
2 ms

are the Clebsch–Gordan coefficients, Yl m(
∧
k) are the spherical harmonic

functions and Mf i(p, q;ms,m
′
s) the matrix elements obtained directly from equation

(1) by considering the total spins in the initial and final states: Mf i(p, q;ms,m
′
s) =

〈sms ′ |Mf i |sms〉. For special cases that s = 0 or l = 0, i.e. without spin–orbit coupling,
equation (8) reduces to [19]

Ml
f i(k) = 1

8π

∫ 1

−1
dx Pl(x)Mf i(p, q; x), (9)

where Pl(x) is the Legendre polynomial with x = cos θ , and θ is the angle between p and q.

2.2. Calculation using method B

Now, let us evaluate the scattering phase shifts by means of method B, treating the amplitude
in helicity representation. The calculation of polarized amplitudes is analogous to that of a
previous study [13], where the spinors involved in initial and final states are specified: in
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the CoM frame, the momenta of two incident particles lie along z axis, the momenta of the
scattered particles lie in the y–z plane. Then for the electron–electron scattering, where the
initial states are described by spinors u(p1) and u(p2) and scattered states by spinors u(p3)

and u(p4), we may write [20]

u(p1) = e−α3
ξ

2 u1(m, 0) u(p2) = eα3
ξ

2 u2(m, 0)

u(p3) = e−iσ1
θ
2 e−α3

ξ

2 u3(m, 0) u(p4) = e−iσ1
θ
2 eα3

ξ

2 u4(m, 0),
(10)

where the quantity ξ is defined by the hyperbolic-cosine function chξ = E
m

= 1√
1−v2 , v = p

E
,

and matrices αk = γ0γk = ( 0
τk

τk

0

)
in which τk-Pauli matrices, and σk = (

τk

0
0
τk

)
are spin

operators, k = 1, 2, 3. These states u(pi ) have been generated from the spin states in the rest
frame, (1 0 0 0)T or (0 1 0 0)T (here they are written as ui(m, 0), superscript T denotes a
transpose operation). We have denoted the spins for u(p1) and u(p2) as + state if their spins
are in the positive direction of z-axis, and likewise the negative direction for the − state. And
u(p3) and u(p4) being + state means that the scattered electrons have their spins along the
positive direction of an axis rotated through the θ− angle from the positive direction of the
z-axis. As an example, we can evaluate the matrix element 〈+ − |Mf i | − +〉 by submitting
equation (10) into equation (1),

〈−+|Mf i |−+〉 = u2(m, 0) eα3
ξ

2 eiσ1
θ
2 γ (1)

µ e−α3
ξ

2 u2(m, 0)

× u1(m, 0) e−α3
ξ

2 eiσ1
θ
2 γ (2)

µ eα3
ξ

2 u1(m, 0)
1

2(m2 − E2) + 2p2 cos θ

−u2(m, 0) eα3
ξ

2 eiσ1
θ
2 γ (1)

µ eα3
ξ

2 u1(m, 0)

× u1(m, 0) e−α3
ξ

2 eiσ1
θ
2 γ (2)

µ e−α3
ξ

2 u2(m, 0)
1

2(m2 − E2) − 2p2 cos θ
, (11)

where γ (i)
µ , i = 1, 2 denote two interacting vertices, and u1(m, 0) = (1000)T and

u2(m, 0) = (0100)T . The subsequent steps are straightforward involving calculations of
only a linear algebra, we will not explicitly show them here. Many such matrix elements
such as 〈+−|Mf i |−+〉, 〈−+|Mf i |−+〉, 〈+−|Mf i |−+〉 etc should be completed. The matrix
elements for all possible combinations of polarized incident and scattered electrons have been
listed in [13].

To compare with the results of method A, we combine the polarized states also
to the entangled form 1√

2
(|+−〉 − |−+〉) and calculate the matrix element 1√

2
(〈+−| −

〈−+|)Mf i
1√
2
(|+−〉 − |−+〉) = 〈−+|Mf i |−+〉 − 〈+−|Mf i |−+〉 as well as its phase shifts.

Since the combination are performed after the relevant processes—such as 〈−+|Mf i |−+〉
and 〈+−|Mf i |−+〉—have been recognized as polarized ones, the combined stated 1√

2
(|+−〉−

|−+〉) is by no means a entangled state. For this combined polarized initial and final states,
the related total angular momentum and spin angular momentum are obviously vanishing; it
is assumed that equation (9) still works in this case.

3. Results and applications

The resultant phase shifts of S-, P-, D-, and f-wave from method A are plotted in figure 1. The
S- and D-wave phase shifts obtained with method B are shown in figure 2.3 The P- and F-wave
shifts obtained with method B vanish for the reason we will discuss below. The phase shifts

3 Here the natural unit 197 eV × 1 nm = 1 is used for convenience of calculation and flat-footed physical meaning.
For instance, α = 1 means the screened region of ∼200 nm.
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Figure 1. The calculated electron–electron scattering phase shifts for S, P, D, F-waves from
method A. The dashed, solid, and dotted lines correspond to α = 0.1, 1 and 10, respectively.
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Figure 2. The calculated electron–electron scattering phase shifts for S, D-waves from method B.
The dashed, solid, and dotted lines correspond to α = 0.1, 1 and 10, respectively.

will not change their signs in a wide region of α provided that α is lower than the electron
mass. Generally, a larger α corresponds to smaller phase shifts. The dependence is illustrated
in figures 1 and 2.

Phase shifts obtained with methods A (figure 1) and B (figure 2) show much different
features. The phase shifts from the two methods for any given partial wave possess different
signs. The sharp difference is presumably due to the use of different ’entangled’ forms in
production as the scattering initial and final states. As aforementioned, the state used in
method A is an entangled one but not in method B. The most salient common feature of the
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An electron pair with 

S- or D-wave interaction

1V
2V

a0 x

(x)V

a−

Figure 3. A square potential well with a thin square potential barrier in the middle of it, and a
confined electron pair with S- or D-wave interactions. In spin singlet, the electrons attract each
other and the device containing such wells will display high electrical conductivity; whereas in
polarized case, the electron pairs will contribute little to conductance.

two sets of phase shifts is that they are both parity dependent. figure 1 shows that the forces
of S- and D-wave are attractive and those of the P - and F-wave are strongly repulsive. We
recall that according to the definition of parity, (−1)l, l is the quantum number in spherical
harmonics Ylm(θ, ϕ), the S- and D-wave are even and the P- and F-wave are odd. In figure 2
we see that the S- and D-wave are repulsive, the P- and F-wave, however, are all vanishing.
The understanding of the parity dependence may follow the fact that the even-parity spatial
function of the two electrons combined with their s = 0 antisymmetric spin wavefunction make
up of the totally perfect antisymmetric wavefunction required by identical electrons. Hence,
in figure 1 the states with the P- and F-wave spacial functions are forbidden by the strong
repulsive force. In figure 2, however, the forbidden states of P- and F-wave are automatically
removed by the special polarization in which the spin direction and its relationship to the
momenta (spatial wavefunction) are defined simultaneously. From non-relativistic QED it is
impossible to obtain the parity dependence for the spatial wavefunction.

It is clear that the interaction in method A is attractive, and that in method B is repulsive.
The attractive force deserves more attention. Its order of magnitudes can be evaluated directly
from the resultant phase shifts. With the assumption that the phase shifts are approximately
in proportion to the transmitted momentum k in the region under concern, equation (7) yields
dδl/dk ≈ −2M〈�l|V |�l〉 ≈ −2MV/(197)3. For α = 1, substituting the electron mass
M = 5 × 105 eV and dδl/dk ≈ 10−8 gives V ≈ −10−8 eV. For a smaller α, (e.g., 0.001),
in a low k energy region, V ≈ −10−4 eV, on just the same order of magnitudes as the force
of Cooper pair in a superconductor. The results might be heuristic in the development of the
spintronic devices. The contributions of each term in equations (2) and (3) to the attractive
and/or repulsive forces can be numerically determined in a straightforward way. The attraction
mainly comes from the contribution of σ1 · p1σ2 · p2 + σ1 · p2σ2 · p1, and the repulsion from
σ1 · σ2, σ1 · p1σ2 · p1 and σ1 · p2σ2 · p2. Contributions from the remaining terms such as
the purely Coulomb term 1

k2 are essentially canceled out by the subtraction of two terms in
equation (1).

The characteristic of phase shifts obtained with methods A and B will not change if we
take two-photon processes [6] and radiation corrections into account. For the two-photon
processes, a similar substraction of equation (1) holds too, so the leading contribution of
the processes is canceled out. The remaining terms will not change the signs of the phase
shifts because, multiplied by the square of the coupling constant, they are negligible to the
next-leading-order terms of the tree level contribution. So, there is no need to consider the
two-photon processes here. The radiative corrections can be done by replacing the masses and
charges in scattering amplitudes with the effective ones [21]. They will not change the sign
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of the calculated phase shifts for there is no electron’s propagator in the amplitude. To put it
another way, the screening effect can be viewed as a part of the renormalization effect [22].
Consequently, if the screening effect can be completely interpreted by renormalization, then
we expect the above results would not change with a particular form of screening.

We propose a mechanism to produce entangled pairs of massive spin-1/2 particles.
Electron pairs are first injected into a semiconductor [23] with the aforementioned screening
environment. In a strong magnetic field spin–orbit coupling can be ignored, and then a
particular relative space-wavefunction of pairs, say, S-wave or D-wave can be filtered out
at the beginning by adding a strong background magnetic field. Then with an electric field
voltage V the pairs can be led to a square potential well with a thin square potential barrier
in the middle which divides the well into two parts (see figure 3), the well and barrier can be
formed by normal semiconductor layers4. Only one pair is allowed in a well. The potential
step of the well and the height of the dividing barrier are adjustable just as in practice. If the
interaction is repulsive, the two electrons tend to be separated by the barrier and the possibility
for either of them to tunnel through the barrier is low; whereas if the interaction is attractive as
in the aforementioned spin-singlet state (method A), the electrons tend to stay together in one
side and the barrier is easy for them to tunnel through. Thus the electrical conductivity of the
well is very low in the former case and very high in the latter. In this way the pairs that make
the well very conducting can be filtered out as the maximally entangled spins (in method A).

4. Conclusions

We have extensively examined the properties of the interacting entangled electrons in a fully
relativistic formalism using two different calculating methods. The parity dependence of
the phase shifts yielded from both approaches suggests that if the entanglement of spins is
kept stable under covariant interaction, the selection of the spacial wavefunction will not be
arbitrary. Furthermore, we find that the spin-singlet pair 1√

2
(|↑↓〉 − |↓↑〉) and the polarized

state 1√
2
(|+−〉 − |−+〉) correspond to two different types of phase shifts. In the former the

electron–electron interaction is attractive and in the latter it is repulsive. In our thought,
it is very important to demonstrate by deliberate calculations that there is an attraction
between entangled electrons in the screening environment. The attraction of like-charged
colloids confined between walls has been observed experimentally [24], and the screening
electron’s attraction has since been supposed to exist by some researchers [25]. However, the
experimental evidence and theoretical basis for the latter were still lacking before our work
report here. The attraction in principle can be tested by experiments in solid, and might be
helpful in developing some devices of spintronics.
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